

How Dataset Characteristics Affect the Robustness of Collaborative Recommendation Models

Deldjoo Yashar, Di Noia Tommaso, Di Sciascio Eugenio, Merra Felice Antonio

{yashar.deldjoo,tommaso.dinoia,eugenio.disciascio,felice.merra}@poliba.it

The 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval July 25-30, 2020 (Xi'an, China)

Outline

- 1. Introduction and Preliminaries
- 2. Problem Formalization
- 3. Experimental Settings
- 4. Results and Discussion
- 5. Conclusion and Future Works

1. Introduction and Preliminaries

Recommender Systems (RS) support users' decision-making process in online or e-commerce platforms (e.g., Netflix, Zalando and Amazon.com).

Which movie?

Main Classes of Recommendation

Content-based filtering (CBF)
 Recommend products based on similarity
 between user profile and unseen items

Main content-based similarity types

- Editorial metadata: genre, artists
- User generated: tags, reviews
- Semantic data: wikidata, DBPedia [1]
- Multimedia: audio, visual content [2]

- [1] Oramas et al., "Sound and music recommendation with knowledge graphs." ACM TIST (2020)
- [2] Deldjoo et al., "Recommender Systems Leveraging Multimedia Content." ACM Computing Surveys (CSUR) (2020)

Main Classes of Recommendation

Collaborative filtering (CF)
 Suggest products experienced by similar users.

Main types of CF models

- Model-based: MF, FM, DCN
- Memory-based: item-knn, user-knn

CF models are vulnerable against manually crafted SHILLING PROFILES

[3] Gunes et al., Shilling attacks against recommender systems: a comprehensive survey, Artif. Intell. Rev. 42, 4 (2014)

Goals of Malicious Attacks

- Business
 - Personal gain against a competitor
 - Market penetration
- Politics
 - Fake social media accounts to spread news about a specific party or belief system
- Privacy
 - Attack privacy of users, data leakage
- Others
 - Attack fairness of a recommendation system.
 - Reduce trustworthiness of the online platform

Prior researches in shilling attack

Previous Studies

- 1. Which attack models impact more the performance of certain recommendation models?
- 2. Which **amount of knowledge** on a rec. model is required for specific attack to influence a recommendation algorithm?

Main Research Question

Given popular shilling attack types and CF models already recognized by the community, which dataset characteristics can explain an observed change in the performance of recommendation?

The Main Contributions

- **1. Modeling.** We studied the influence of data characteristics on the recommendation performance using a regression-based explanatory model (inspired by [7])
- 2. **Data characteristics.** We validates the correlation between data characteristics and attack effectiveness on an extensive suite of data characteristics
- 3. Experiments. We conducted an empirical analysis on:
 - 6 Shilling Attack Strategies
 - 3 Collaborative Filtering models
 - o 3 Real-World datasets

[7] Adomavicius and Zhang, Impact of data characteristics on recommender systems performance, ACM TIST 2012.

2. Problem Formalization

The Independent Variables (IVs)

- The IVs are the dataset characteristics under investigation.
- We investigated 6 IVs categorized as follows:
 - IVs based on URM structure (Structural)
 - IVs based on rating frequency of the URM (Distributional)
 - IVs based on rating values of the URM (Value-based)

 $|\mathcal{I}| = \text{Num. of Items}$

Scaling factor

 $|\mathcal{U}| = \text{Num. of Users}$ $|\mathcal{K}| = \text{Num. of Ratings}$

Structural IVS

- Space Size
- Shape

$$x_1 = \log_{10}\left(\frac{|\mathcal{U}| \cdot |\mathcal{I}|}{sc}\right)$$

$$x_2 = \log_{10}(\frac{|\mathcal{U}|}{|\mathcal{I}|})$$

Density

$$x_3 = \log_{10}(\frac{|\mathcal{K}|}{|\mathcal{U}| \times |\mathcal{I}|})$$

Log transformation to normalize the distribution of the variables.

[8] Deldjoo et al., Assessing the Impact of a User-Item Collaborative Attack on Class of Users, In ImpactRS@RecSys' 19

Distributional IVs

 $|\mathcal{K}_i| = \text{Num. of Ratings Received by Item } i$ $|\mathcal{K}_u| = \text{Num. of Ratings Given by User } u$

Gini Index for Item

$$x_4 = 1 - 2\sum_{i=1}^{|\mathcal{I}|} \left(\frac{|\mathcal{I}|+1-i}{|\mathcal{I}|+1}\right) \times \left(\frac{|\mathcal{K}_i|}{|\mathcal{K}|}\right)$$

Gini Index for Users

$$x_5 = 1 - 2\sum_{u=1}^{|\mathcal{U}|} \left(\frac{|\mathcal{U}|+1-u}{|\mathcal{U}|+1}\right) \times \left(\frac{|\mathcal{K}_u|}{|\mathcal{K}|}\right)$$

Gini coefficients = 0 --> Equal Popularity (e.g., all users give the same number of ratings)
Gini coefficients = 1 --> Total Inequality (e.g., only one user has given all ratings)

[9] Herlocker et al., Explaining collaborative filtering recommendations, In CSCW 2000

Value-based IVs

Standard Deviation of Rating Values

$$x_6 = \sqrt{\frac{\sum_{i=1}^{|\mathcal{K}|} (r_i - \bar{r})^2}{|\mathcal{K}| - 1}}$$

where r_i is the i-th Rating, and \bar{r} is the Average Rating Value.

The Dependent Variables (DV)

- The dependent variable (DV) represents the effectiveness of the attack on RS.
- Inspired by the Overall Hit Ratio[10], we proposed and investigated the <u>Incremental Overall Hit Ratio</u>:

 Before the Attack

Let
$$HR@k(\mathcal{I}_T,\mathcal{U}_T) = \frac{\sum_{i_t \in \mathcal{I}_T} hit(i_t,\mathcal{U}_T)}{|\mathcal{I}_T|}$$
 then $\Delta_{HR@k} = \hat{HR}@k - HR@k$

Hit Function

After the Attack

[10] Charu C. Aggarwal, Recommender Systems - The Textbook, Springer 2016

The Explanatory Framework (EF)

- The EF tests the causal hypothesis in a theoretical construct:
 - Are a set of effects measured by IVs the cause for an effect measured by the DV?
- Our Causal Hypothesis:
 - Are the data characteristics causing variations in attack performance?
- Inspired by Adomavicious et al.[7], we use a **regression model** as the interpretable model.

The Regression Model (Compact Form)

• The regression model used to study the causal relationship is

$$\mathbf{y} = \boldsymbol{\epsilon} + \theta_0 + \boldsymbol{\theta}_d \mathbf{X}_d + \boldsymbol{\theta}_c \mathbf{X}_c$$

where

 θ_0 represents the expected value of \boldsymbol{y}

 $\boldsymbol{\theta}_d = [\theta_1, \theta_2, ..., \theta_{D-1}]$ is the vector containing coefficients of the dummy variable \mathbf{X}_d

 $\boldsymbol{\theta}_c = [\theta_1, \theta_2, ..., \theta_C]$ is the vector of the regression coefficient associated with the IVs

 \mathbf{X}_c is the matrix containing the IVs values

The Explanatory Analysis

- We applied the EF to for two analysis
 - Within-dataset analysis. Study < Dataset, Attack, CF-RS > combinations

$$(\theta_0^*, \boldsymbol{\theta}_c^*) = \min_{\theta_0, \boldsymbol{\theta}_c} \frac{1}{2} \| \boldsymbol{y} - \theta_0 - \boldsymbol{\theta}_c \mathbf{X}_c \|_2^2$$

Between-dataset analysis. Study < Attack, CF-RS > combinations

$$\mathbf{H}(\theta_0^*, \boldsymbol{\theta}_d^*, \boldsymbol{\theta}_c^*) = \min_{\theta_0, \boldsymbol{\theta}_d, \boldsymbol{\theta}_c} \frac{1}{2} \| \boldsymbol{y} - \theta_0 - \boldsymbol{\theta}_d \mathbf{X}_d - \boldsymbol{\theta}_c \mathbf{X}_c \|_2^2$$

dummy term for the dataset-independent analysis

3. Experimental Settings

Datasets

Dataset	$ \mathcal{U} $	$ \mathcal{I} $	$ \mathcal{K} $	density
$\overline{\mathrm{ML-20M}}$	138,493	26,744	20,000,263	0.0054
Yelp	$25,\!677$	25,778	705,994	0.0010
LFM-1b	120,175	521,232	25,285,767	0.0004

CF Recommender Models

- **User-kNN** [11]: predicts the score of unknown user-item pairs by considering the feedback of the users in the neighborhood.
- Item-kNN [11]: estimates the user-item rating score by using the recorded user's feedback on the neighborhood items.
- Matrix Factorization (SVD [12]): learns user-item preferences, by factorizing the sparse user-item feedback matrix.

[11] Koren, Factor in the neighbors: Scalable and accurate collaborative filtering, TKDD 2010

[12] Koren et al., Matrix factorization techniques for recommender systems, IEEE Computer 2009

Shilling Attacks

Taxonomy based on [13]:

INTENT

- PUSH (Increase the probability of a <u>target</u> item to be recommended)
- NUKE (Reduce the probability of a <u>victim</u> item to be recommended)

KNOWLEDGE

- o **Low-Knowledge:** attackers require little or no knowledge about the rating distribution
- o **Informed:** adversaries get knowledge on dataset rating distribution

[13] Lam, S.K., Riedl, J., Shilling recommender systems for fun and profit, WWW 2004

The Form of Fake Profiles

I_S		I_F		I_{\emptyset}		I_T			
$i_s^{(1)}$	•••	$i_s^{(lpha)}$	$i_f^{(1)}$	•••	$i_f^{(\phi)}$	$i_{\emptyset}^{(1)}$	•••	$i_{\emptyset}^{(\chi)}$	i_t

 I_S Items selected in case of informed strategies, which exploit attacker's knowledge.

 I_F Items **RANDOMLY** selected to make the shilling profile difficult to be detected.

 I_T Target Item attacked to change. (Rating = 5 for push intent, 1 for nuke intent)

[14] Bhaumik et al., Securing collaborative filtering against malicious attacks through anomaly detection, ITWP 2016

The Attack Strategies

Attack Type		I_S		I_F	I_{ϕ}	I_T
	Items	Rating	Items	Ratings		
Random	Ø		$\frac{\sum_{u\in U} I_u }{ U }-1$	$rnd(N(\mu,\sigma^2))$	$I-I_F$	max
Love-Hate	Ø		$\frac{\sum_{u \in U}^{ U } I_u }{ U } - 1$		$I-I_F$	max
Bandwagon	$(\frac{\sum_{u\in U} I_u }{ U })/2-1$		$\left(\frac{\sum_{u\in U} I_u }{ U }\right)/2$	$rnd(N(\mu,\sigma^2))$	$I-I_S-I_F$	max
Popular	$\frac{\sum_{u \in U} I_u }{ U } - 1$	$min ext{ if } \mu_f < \mu ext{ else } min + 1$	Ø		$I-I_S$	max
Average	Ø		$\frac{\sum_{u \in U} I_u }{ U } - 1$	$rnd(N(\mu_f, \sigma_f^2))$	$I-I_F$	max
P. Knowledge	$\frac{\sum_{u \in U} I_u }{ U } - 1$	max	Ø		$I-I_S$	max

Sub-Sample generation procedure

```
Input: URM
Results: \mathcal{N} sub-datasets (urm_n)
n \leftarrow 1
while n \leq \mathcal{N} do
    Random shuffle the row of the URM
    [num_{users} \leftarrow rnd([100, 2500])]
    num_{items} \leftarrow rnd([100, 2500])
    urm_n \leftarrow \text{Selection of } num_{users}, num_{items} \text{ from URM}
    if density(urm_n) \in [0.0005, 0.01] then
        n \leftarrow n+1
```


The Evaluation

To evaluate the EF we studied:

- \circ Adjusted Coefficient of Determination R^2
 - 1 -> The DV is completely explained by the IVs
 - 0 -> The model explains none of the variability in the output
- Directionality of the Regression Coefficients.
 - +/- -> Positive/Negative Impact of the IV on the DV
- Significance of the Regression Coefficients
 - ullet p < 0.05 Statistically Significant Results

Evaluation Questions

- 1. Is there an underlying relationship between the IVs and the effectiveness of shilling attacks measured in terms of Overall Hit Ratio, the DV?
- 2. How **significant** is the impact of each IV? Is the **directionality** positive or negative?
- 3. Is the impact consistent in a domain-independent setting?

4. Results and Discussion

Within Dataset Analysis: Coefficient of Determination

 Given a < Dataset, Attack, CF-model > we observed that the six IVs can explain more than 65% of the DV variation

$\Delta_{HR@10}$					
		$ m ML ext{-}20M$	Yelp	LFM-1b	
	$R^2(adj.R^2)$	0.761(0.758)	0.838(0.835)	0.673(0.668)	
Random	Constant	.179***	.609***	.717***	
	$SpaceSize_{log}$	-0.063***	.041	-0.629***	
	$Shape_{log}$.184***	.248***	.288*	
	$Density_{log}$	-0.189***	-0.316*	-1.546***	
	$Gini_{users}$.277	-0.012	1.901***	
	$Gini_{item}$	-0.102	-0.485	1.753***	
	Std_{rating}	-0.072	.287	-0.152	

- Maximum values for the SVD model on Yelp (>85%)
- Minimum on User-kNN for LFM-1b (from 66% to 67%).

Within Dataset Analysis: Significance

- The significance of the regression coefficients varies for group of IVs.
- The coefficients computed for the **Structural Characteristics** are **mostly significant**.
- Gini indices coeff. are mostly significant for shilling attacks against SVD (Yelp, LFM)
- Standard Deviation coeff. are generally NOT Significant (p-value>0.05)

$\Delta_{HR@10}$						
		ML-20M	\mathbf{Yelp}	LFM-1b		
	$R^2(adj.R^2)$	0.841(0.839)	0.914(0.912)	0.786(0.784)		
Bandwagon	Constant	.435***	.522***	.689***		
	$SpaceSize_{log}$	-0.006	.372***	-0.366***		
	$Shape_{log}$.244***	.278***	.206*	1	
	$Density_{log}$	-0.314***	.401***	-1.047***		
	$Gini_{users}$.602***	-0.680**	.976*		
	$Gini_{item}$.268	-1.278***	1.276***		
	Std_{rating}	-0.290	.321*	-0.066	▼	

Within Dataset Analysis: Directionality

<u>Density</u> and <u>Space</u> have <u>Negative Impact</u>.

For instance, *Increasing* the **density** (or decreasing sparsity) of the dataset *REDUCES* the attacks' effectiveness.

Shape has Positive Impact:

Increasing the shape leads to have more users than items.

Pushing the target item might be simpler since there are few items to overcome considering a fixed size and density.

Between Dataset Analysis

To provide a **domain-independent analysis** by combining all the sub-samples of the 3 datasets and check the **CONSISTENCY** of the previous results.

	$\Delta_{HR@10}$	User-kNN	Item-kNN	$\overline{\mathrm{SVD}}$
	$R^2(adj.R^2)$	0.828(0.827)	0.810(0.809)	0.844(0.843)
	ML-20M (Constant)	.187***	.275***	.502***
	Yelp	.421***	.332***	.020***
	LFM-1b	.529***	.438***	.186***
Average	$SpaceSize_{log}$	-0.193***	-0.082***	.065***
	$Shape_{log}$.152***	.107***	.192***
	$Density_{log}$	-0.718***	-0.522***	-0.219***
	$Gini_{user}$.559***	-0.039	.011
	$Gini_{item}$.717***	.407***	-0.062
	Std_{rating}	-0.054	.059	-0.013
**** < 00	$1 **_n < 01 *_n < 05$			

Between Dataset Analysis: Discussion

- The coefficients of determination are consistent with those in within-dataset analysis in most experimental cases
- Results still support that structural URM properties have a statistically significant impact on each CF model (p-values < 0.001)
- The directionality analysis of structural IVs is consistent with the insights drawn from the within dataset analysis.

5. Conclusion and Future Works

Conclusion

- We studied the impact of data characteristics on the effectiveness of most famous shilling attacks against popular CF methods with a regression model.
- The structural, distributional, and value-based properties:
 - Account for the variations in attack performance (global perspective)
 - Have differences in the significance, and directionality (local perspective).
- We plan to extend:
 - The set of studied characteristics (e.g., user-item relations)
 - CF models (e.g., deep learning approaches)
 - Novel Adversarial Machine Learning Attack Startegies [14]

[14] Deldjoo, Y., Di Noia, T. and Merra, F.A., 2020. Adversarial Machine Learning in Recommender Systems: State of the art and Challenges. arXiv preprint arXiv:2005.10322.

Contact Presenter Info:

felice.merra@poliba.i t

@merrafelice

